

(Bidirectional, SM, PM) (Protected by U.S. pending patents)

DATASHEET

The MEMS 1x4 Latching Type Series Fiber Optic Switch connects optical channels by redirecting incoming optical signals into selected output fibers. This is achieved using a patent pending MEMS™ configuration and activated via an electrical control signal. It uniquely features rugged thermal activated micro-mirror movement instead of rotation.

This novel design significantly reduces packaging requirement and simplifies driving electronics, offering unprecedented high stability as well as an unmatched low cost.

Applications

- Channel Blocking
- Configurable Add/Drop
- System Monitoring
- Instrumentation

Features

- High reliability
- Intrinsic tolerance to ESD

Specifications

Param	eter	Min	Typical	Max	Unit
Operation Wavelength	Single Band	850±4			
	Dual Band	850±40 and 1	nm		
	Broad Band				
Insertion Loss [1]			0.6	1.0 (1.2 [2])	dB
Wavelength Dep	endent Loss		0.15	0.3 [2]	dB
PDL (SM)				0.1	dB
Extinction Ratio (PM)	18			dB
Cross Talk [1]		50			dB
Return Loss [1]		50			W
Switching Time			5	10	ms
Repeatability				± 0.05	dB
Repetition Rate				5	Hz
Durability		10 ⁹			cycle
Switching Type					
Operating Tempe	erature	-5		70	°C
Storage Temperature		-40		85	°C
Optical Power Handling (CW)			300	500	mW
	SM	SM			
Fiber Type	PM	Panda 250, F			
	MM	MM 50/125			

Notes:

- [1]. Exclude connectors.
- [2]. Dual and Broad band.

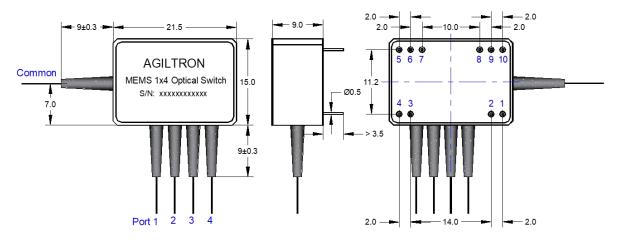
Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.

Rev 02/07/24

© Photonwares Corporation

P +1 781-935-1200

www.agiltron.com

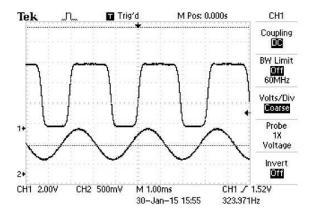


(Bidirectional, SM, PM) (Protected by U.S. pending patents)

DATASHEET

Mechanical Footprint Dimensions (mm)

^{*}Product dimensions may change without notice. This is sometimes required for non-standard specifications.


Electronic Control Requirements

Optical Path	Pin Number									
	1	2	3	4	5	6	7	8	9	10
$Com \leftrightarrow Port 1$	5 VDC [1]	0	0	0	0	0	0	0	0	5V Pulse
$Com \leftrightarrow Port 2$			0	0	0	0	0	5V Pulse	5V Pulse	0
Com ↔ Port 3			0	5V Pulse [2]	0	5V Pulse	5V Pulse	0	5V Pulse	0
Com ↔ Port 4			0	0	5V Pulse	0	5V Pulse	0	5V Pulse	0

^{[1]. 5}VDC: 5.0±02 V. Static 3 mA; During Pulse Current is 100 mA. The switch will remain in its previous light path state, if this voltage is removed (latching).

109 Switching Cycle Test

We have tested MEMS 1x2 switch at the resonant frequency ~300Hz for more than 40 days, as shown in the attachment, which corresponding over 10 9 switching cycles. The measurements show little changes in Insertion loss, Cross Talk, Return loss ect, all parameters are within our specs.

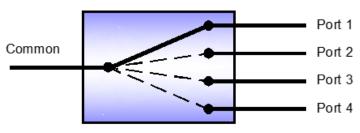
© Photonwares Corporation

P +1 781-935-1200

E sales@photonwares.com

w www.agiltron.com

^{[2]. 5}V Pulse: 5.0±02 V. Pulse width is 40±5 ms.



(Bidirectional, SM, PM) (Protected by U.S. pending patents)

DATASHEET

Functional Diagram

MEMS 1x4 Series Switch

Ordering Information

			1	1				
Prefix	Туре	Wavelength	Switch	Package	Fiber Type	Fiber Cover	Fiber Length	Connector
MESM- ^[1] MEMP- ^[2]	1x3=13 1x4=14 Special=00	1260~1620=B 1060=1 C+L=2 1310=3 1550=5 780=7 850=8 1310/1550=9 Special=0	Latching=1	Standard=1	SMF-28 = 1 PM1550 = B Special = 0	Bare fiber=1 900um tube=3 Special=0	0.25m=1 0.5m=2 1.0m=3 Special=0	None=1 FC/PC=2 FC/APC=3 SC/PC=4 SC/APC=5 ST/PC=6 LC/PC = 7 Duplex LC/PC = 8 LC/APC = A LC/UPC = U Special = 0

[1]. MESM: MEMS 1x4 SM Mini Switch

[2]. MEMP: MEMS 1x4 Mini PM Switch

NOTE:

☐ PM1550 fiber works well for 1310nm

Fiber Core Alignment

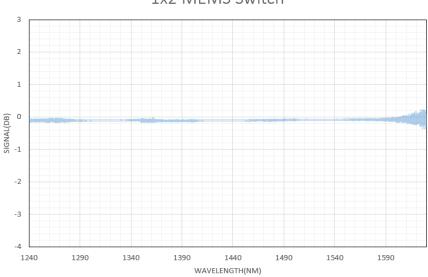
Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

Fiber Cleanliness

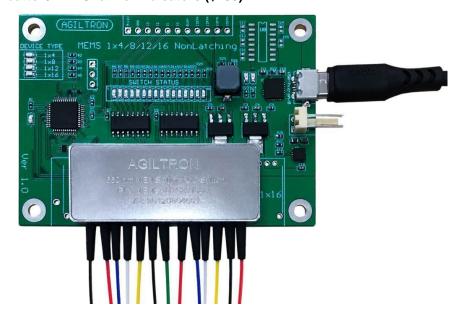
Fibers with smaller core diameters (<5 µm) must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650nm. We produce a special version to increase the how handling by expanding the core side at the fiber ends.



(Bidirectional, SM, PM) (Protected by U.S. pending patents)


Typical Insertion Loss vs Wavelength (1240-1630nm)

1x2 MEMS Switch

Demo Driver

USB RS232/GUI, Pushbutton/LED Channel Indicators (\$255)

